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ABSTRACT 

Three groups of algorithms applied to mass transport equations in electrokinetic processes are described and compared. They 
are used for solving a set of partial differential equations expressing the conservation of mass and charge laws, the dissociation 
equilibria and electroneutrality. These equations should be able to predict the shape and structure of the boundaries and peak 
diffusion and anomalies as the analytes are driven in the electric field past the detector port. Three different numerical algorithms 
have been proposed: by Mosher et al. (The Dynamics of Electrophoresis, VCH, Weinheim, 1992), by Dose and Guiochon [Anal. 
Chem., 63 (1991) 1063-10721 and by Ermakov et al. [Electrophoresis, 13 (1992) 838-8481. The first two algorithms offer 
numerical solutions which can only be implemented at unrealistically low current densities, two to three orders of magnitude 
lower than normally adopted in practical electrophoresis. When applied to real experimental conditions, both previous algorithms 
break down: the separated analyte zones, as obtained by simulation, decay into several solitary waves (solitons), resulting from 
the action of numerical dispersion. In contrast, the numerical algorithms proposed by Ermakov er al. still allow the prediction of 
peaks of with the correct shape, with only minor non-physical spikes. 

INTRODUCTION 

Progress in theoretical studies of electropho- 
resis processes nowadays depend more and more 
on computer simulations, because only with the 
help of a computer can one move forward in 
solving the set of numerical non-linear electro- 
phoresis equations. Only a few simplified limit- 
ing cases of these equations could be solved 
analytically. The altekative to an analytical solu- 
tion for complex equations is a numerical solu- 
tion with the help of a computer which allows 
one to model a practical process governed by 
non-linear partial differential equations (PDEs). 
Computer simulations are able to help an ex- 

* Corresponding author. 
* Permanent address: Keldysh Institute of Applied Mathe- 

matics, Russian Academy of Sciences, Miusskaya Sq. 4, 
Moscow 125047, Russian Federation. 

** Permanent address: Institute of Macromolecular Com- 
pounds, Russian Academy of Sciences, Bolshoi 31, St. 
Petersburg 199004, Russian Federation. 

perimenter to investigate the effects of the ion 
mobilities, pH and other parameters on the 
results of the separation run and/or to optimize 
the analysis conditions. 

In the field of electrophoresis, numerical 
modelling was commenced by Bier’s group about 
10 years ago. An extensive review of what has 
been done since then with relevant references 
can be found in a recently published book by 
Mosher et al. [l]. Previous work demonstrated 
that all types of electrophoresis are governed by 
the same set of PDEs expressing the conserva- 
tion laws of mass and charge, dissociation 
equilibria and electroneutrality. Examples of 
modelling give good qualitative agreement with 
experiments for different modes of electropho- 
resis. 

Nevertheless, there is still a gap between 
numerical modelling and experiments. In order 
to bridge the gap and make numerical modelling 
a useful tool for a practitioner (as it is in fluid 
dynamics, heat transfer and some other fields), 
one has to be convinced that the results of 
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modelling are in agreement with those given by 
real experiments. Today, most of the papers 
dealing with numerical solutions of electropho- 
resis equations present solely calculated concen- 
tration, pH and conductivity profiles along the 
column axiS or, in the best case, compare them 
with time dependences of a UV sensor signal. 
Hence quantitative comparison of the ex- 
perimental and calculated results is impossible 
and, usually, is not the goal of such simulations. 
However, as has been pointed out in a review [2] 
of the book by Mosher et al. [l], “Quantitative 
evidence, e.g., simulated and experimental re- 
sults side by side with a graphical output format 
that uses the same coordinate system. . .” is 
desirable. We believe that the aforesaid describes 
not only what the particular book lacks but what 
the whole field of numerical modelling in electro- 
phoresis is missing. 

Numerical algorithms help only if they are 
very carefully elaborated and adjusted to the 
equations they are supposed to solve. This is well 
known in fluid mechanics where the develop- 
ment of new algorithms and numerical modelling 
has become a separate scientific field called 
“computational fluid dynamics”. Electrophoresis 
equations are very similar to those of fluid 
dynamics and, therefore, most of the problems 
encountered there might be expected to appear 
in numerical simulations of electrophoresis pro- 
cesses. The main difficulty in a numerical solu- 
tion of electrophoresis equations arises from a 
solution for the unsteady (i.e., time-dependent) 
mass transport equations when they describe 
moving zones with sharp non-uniformities of 
concentrations, velocities, temperature, etc., 
similar to shock waves in gas dynamics. 

There are several approaches for a numerical 
solution of electrophoresis equations based on 
finite-difference techniques [1,3-131. All algo- 
rithms applied to the mass transport equations in 
electrophoresis simulations may be divided into 
three groups: that used in refs. 1 and 4-6, that 
used in refs. 3 and 7-10 and that used in refs. 13 
and 14. The first two groups [1,3-lo] use similar 
methods for representing space derivatives in the 
transport equation and differ mostly in the 
method of temporal discretization. The algo- 
rithms used there under certain circumstances 

give solutions with spurious oscillations (see ref. 
1, p. 58, and ref. 3). In order to avoid these 
oscillations and numerical instabilities, one is 
forced either to use high-speed computers [3] or 
to simulate separations at current densities more 
than two orders of magnitude less than ex- 
perimental current densities [4]. In the first case 
these algorithms cannot be used on the personal 
computers usually provided with a capillary 
electrophoresis unit. In the second case, a pre- 
diction made for current densities two orders of 
magnitude less than those routinely adopted 
experimentally can hardly be interpreted as 
being quantitative. 

In an attempt to improve numerical methods 
for unsteady electrophoresis equations, a high- 
resolution finite-difference algorithm based on a 
finite-difference scheme with artificial dispersion 
[ll] has recently been developed by Ermakov et 
al. [12,13]. This algorithm was successfully ap- 
plied to the simulation of capillary zone electro- 
phoresis (CZE) and capillary isotachophoresis 
(ITP) [14], where it showed its ability to resolve 
sharp isotachophoretic boundaries and demon- 
strated excellent agreement with exact analytical 
results [15]. The algorithm [13] has been extend- 
ed to multi-dimensional simulations, particularly 
to column electrophoresis, where two-dimen- 
sional sample evolution was studied [16]. 

This paper aims at testing and comparing the 
different numerical algorithms, particularly the 
properties of finite-difference schemes used for 
the solution of mass transport equations. All 
three numerical schemes, used for electropho- 
retie simulations, are implemented and applied 
to electrophoretic problems having explicit ana- 
lytical solutions. This approach shows drawbacks 
inherent in specific numerical methods. Exam- 
ples of simulations for CZE and ITP runs allow 
one to compare three numerical algorithms. The 
results of these numerical experiments exhibit 
limits of validities for these schemes and thus 
shed light on their applicability to real electro- 
phoresis problems. The results of simulations are 
presented in the same form as seen by an 
experimenter, namely as dependences of concen- 
tration verSuS time for parameters of simulations 
corresponding to normal experimental condi- 
tions . 
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This is not the only approach we have adopted 
in bringing computer science into the realm of 
electrophoresis. In a recent development, Bello 
et al. [17] proposed a computer program able to 
predict buffer temperature and electric current in 
CZE as. a function of capillary diameter, type of 
cooling device, buffer conductivity and applied 
voltage gradient. This program calculates with 
high precision the temperature inside the capil- 
lary, and can thus predict mobility shifts of 
analytes run with different voltage gradients. 
Given that today a number of CZE units are 
laboratory made and lack forced liquid cooling, 
this program should enable the experimenter to 
program precisely the temperature at which to 
perform a separation. This parameter is of ut- 
most importance in, e.g., micellar electrokinetic 
chromatography (since the partition coefficient 
of the analyte is strongly temperature depen- 
dent) [18] and in DNA separations, for runs 
below or above the melting point of double- 
stranded DNAs [19]. In yet another approach, 
we have applied computer science to the optimi- 
zation of pH gradients to be adopted in isoelec- 
tric focusing separations with insolubilized buf- 
fers and titrants [20]. This program, developed 
over a lo-year period [21], allows the modelling 
of linear and non-linear (convex and concave 
exponentials, sigmoidal) gradients utilizing mix- 
tures of up to 50 buffers and titrants. Its use in 
single- and two-dimensional separations of pro- 
tein mixtures is now routine and its use has been 
instrumental in novel findings in, e.g., molecular 
biology, biochemistry and human pathology [22]. 
This program is now being introduced into 
chromatographic science for separations per- 
formed under non-isocratic conditions. 

THEORY 

All modes of electrophoresis are governed by 
the general set of PDEs including mass transport 
equations for all components of the solution, the 
equation of charge conservation, the equation of 
electroneutrality and algebraic equations of ionic 
equilibria [ 11. These equations form the basis for 
a general theoretical treatment of electrophoresis 
and the starting point for numerical simulations 
in particular. For the solution containing mono- 

valent weak acids and bases the equations are 
reported in Appendix A. Further, we restrict 
ourself to capillary electrophoresis and particu- 
larly to CZE and ITP. This section presents 
known analytical solutions for mass transport 
PDE, which are further used as reference pat- 
terns for comparing different numerical meth- 
ods. Numerical methods for mass transport 
equations used for electrophoresis simulations 
are also described. 

Analytical solutions to unsteady mass transport 
equations in electrophoresis 

Only in a few limiting cases are analytical 
solutions for these equations known. Here we 
mention two of them for zone electrophoresis: 

(1) Sample zones migrate with constant ve- 
locities determined by their electrophoretic mo- 
bilities and do not interact either with each other 
or with the buffer. The mass transport equation 
is linear and the well known solution in this 
instance for the sample introduced as an infinite- 
ly narrow band is the Gaussian peak migrating 
with constant velocity in the direction parallel to 
the direction of applied electric field, i.e., along 
the capillary axis. 

(2) A sample zone changes the electric con- 
ductivity of the background electrolyte v,,, but 
not its pH, and migrates without diffusion. The 
conductivity c in the sample zone is linearly 
dependent on the concentration of the sample C 
according to (T = a,( 1 - UC), where (Y is a pro- 
portionality coefficient. Both sample and buffer 
are uni-univalent electrolytes (see Refs. 23 and 
24 and references cited therein). The analytical 
solution is a discontinuous function. 

In both instances the concentration of the 
sample constituent is governed by the mass 
transport equation [23]; 

ac a(4 =D.a2c 
dt+- ax ax* 

(1) 

u = u,l(l - aC) (2) 

where u0 is the migration velocity at the sample 
infinite dilution, x is the axis coordinate along 
the capillary, t is time and D is the diffusion 
coefficient. 
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The first case of a linear equation can be 
obtained from eqns. 1 and 2 by setting (Y = 0 in 
eqn. 2, whereas the equation for the second case 
corresponds to (Y # 0, D = 0. 

It is convenient to take analytical solutions for 
eqn. 1 corresponding to particular forms of 
initial conditions: to the form of a Gaussian peak 
of unit height in the first case and to the form of 
a rectangular pulse of a height C,, in the second 
case. The initial conditions are shown graphically 
in Fig. 1 and are represented by the following 
equations: 

C(x,O) =exp - 
[ 

(x - XOY 
20-2 

0 1 

and 

(3) 

C(x, 0) = Co, 0 6 x s Al and C(x, 0) = 0, 

x>AI, x<O (4) 

where x0 is the initial peak position, a0 is its 
initial dispersion, AZ is the initial width of the 
rectangular pulse and Co is the initial concen- 
tration in the pulse. 

Assuming that the capillary is infinite, then the 
boundary conditions for eqn. 1 are the con- 
ditions at infinity and are given by 

C( &a, t) = 0 (5) 

The analytical solution to eqn. 1 with the initial 
condition of eqn. 3 and the boundary condition 
of eqn. 5 is given by 

Fig. 1. Initial concentration profiles for model electropho- 

resis problems. The dashed line gives the profile for the 

linear equation ((Y = 0) and the solid line gives that for the 

non-linear equation ((Y # 0); detection point xd = 0.4. 

%I~ t) = q& exp [ 

-(xd - x0 - Ut)* 
4D(t* + t) 1 

(6) 

A2 I 
+C=Z 

t*=m, A= C(x, t) dx = v&CT0 _-m 

where xd is the coordinate of the detection point. 
Eqn. 6 gives the concentration at the detection 
point as a function of time. 

The second type of solution for eqns. 1 and 2 
in a non-diffusional, non-linear case (a # 0 and 
D = 0) with the initial condition of eqn. 4 is 
given by 

(1) cu<o: 

C(x,, 0 = 

xd - Al 
tmin = ~ 

UO 

t -=c tmin or t > t,,, 

(7) 

t max 
=-&m+gp,* 

(2) (Y >o: 

C(x,, t) = 

t < tmin or t > t,,, J 

t max = x,Iu, 

where tmin and t,,, are the moments when the 
zone appears and disappears at the detection 
point. Eqns. 7 and 8 are obtained from eqns. 10 
and 14 in ref. 23, and their validity has the same 
limits as those of ref. 23. 

The analytical solutions presented above are 
important for understanding diffusion (case 1) 
and electrochemical broadening (case 2) in zone 
electrophoresis. However, they describe only the 
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simplest possible cases and fail when applied, 
e.g., to the case when both electrochemical and 
diffusion broadening are significant. The way to 
simulate complex behavior is to apply numerical 
methods to the electrophoresis equations. 

Numerical solutions 
The process of numerical solution usually 

includes two major stages. During the first, it is 
necessary to reduce the set of PDEs, derived in 
terms of infinitely small increments for continu- 
ous variables, to their discrete analogues as a set 
of finite-difference equations. The second stage 
assumes the choice of a numerical method for 
solving the large number of linear or non-linear 
algebraic equations, resulting from the previous 
stage of discretization. The final result and the 
quality of numerical solution depend on both 
stages. However, most of the work on computer 
simulation of electrophoresis [3,5,9,10] in the 
sections devoted to numerical algorithms pay 
attention mainly to the second stage of a solution 
process. In their considerations they are re- 
stricted to the problem of numerical stability of 
the algorithm [3,5], its computational efficiency 
[5,9] or the organization of calculations [7]. 
However, as has been shown [13], it is also very 
important to analyse theoretically the stage of 
discretization, accounting for the specifics of the 
governing equations. In this paper we demon- 
strate how the appropriate choice of a finite- 
difference scheme for the mass transport equa- 
tion may significantly improve the quality of a 
solution and, hence, fulfil simulations more effi- 
ciently and for a much wider range of ex- 
perimental parameters. 

The characteristic feature of electrophoresis 
simulations is the necessity to solve numerically 
the set of non-stationary mass transfer equations 
similar to eqn. 1, which are PDEs with a small 
parameter D multiplying the second derivative 
(indeed, it is more correct to-consider as a small 
parameter the combination D = DIUL, where U 
and L are the velocity and the linear dimension 
scales, respectively). This is a difficult task even 
for problems with one space dimension because, 
as has been pointed out [13], one should use a 
finite-difference grid with very small space incre- 
ments to avoid some negative effects of a purely 

computational nature. These effects originate 
from discretization of PDEs when one replaces 
eqn. 1 with its discrete analogue, i.e., finite- 
difference scheme. Discretization includes the 
introduction of a finite-difference grid with space 
step h and time step T instead of continuous 
space and time variables and projection of all 
functions on the nodes of the grid (for details 
and notation, see Appendix B). One of the 
crucial points here is how to approximate the 
convective term a(uC) The two simplest and 
most commonly used approaches are the “up- 
wind” difference and central difference approxi- 
mations. The approximation with “upwind” dif- 
ference gives the finite-difference scheme with an 
approximation error proportional to the first 
power of space step h [25]. The effects of 
numerical diffusion, which often is much greater 
than the physical diffusion (especially for small 
D), is inherent in such schemes. This numerical 
diffusion could entirely obscure the physical 
results, which has been demonstrated for ITP 
separations [ 131. The finite-difference schemes 
used by most workers [3,5,9,10] approximate the 
convective term by a central difference, having 
an error of approximation proportional to the 
second order of h. These schemes are free from 
numerical diffusion, but they give spurious oscil- 
lations in the regions with sharp gradients if the 
space step h in a finite-difference grid is not 
small enough. It has been shown [13] that the 
oscillations are associated with the dispersion, 
introduced by the discretization. 

The origin of these two non-physical effects 
(numerical diffusion and numerical dispersion) 
lies in the discretization stage, so they cannot be 
eliminated in the stage of solution of finite-differ- 
ence equations. Theoretically, to reduce their 
negative influence, it is necessary to use a finite- 
difference grid with space steps h much less than 
D, b_ut in practice it is often sufccient to use 
h - D. However, for very small D values this 
restriction on h becomes too severe. In order to 
overcome it, a special finite-difference scheme 
with artificial dispersion was developed for elec- 
trophoresis problems [13]. It allows one to solve 
eqn. 1 accu tely using the finite-difference grid 
with h - $” 6, which considerably reduces the 
calculation effort. 
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In our simulations we compare three basic 
finite-difference algorithms. In the first, similar 
to those used by others [3,9,10], the convective 
term is approximated in eqn. 1 by a central 
difference equation and the diffusive term with 
the usual three-point equation. In the second 
algorithm [1,5], the convective term is approxi- 
mated as in the previous case, but the diffusive 
term is replaced with a five-point equation. The 
third algorithm implements the finite-difference 
scheme with artificial dispersion as reported in 
ref. 13. All these algorithms are described in 
Appendix B and denoted as Bl, B2 and B3, 
respectively. As mentioned above, the numerical 
algorithm is determined by (i) the stage of 
discretization and, particularly, the space dis- 
cretization, and (ii) the solution method for 
ordinary differential equations resulting from 
space discretization or, if the temporal discretiza- 
tion leads to a set of algebraic equations, the 
solutions method for algebraic equations. As it 
was difficult to establish exactly what method 
was used in previous work [3,5,7,9,10], we chose 
the Euler method for integration of the set of 
ordinary differential equations with temporal 
derivative (finite-difference scheme Bl) and the 
Runge-Kutta method for integration of the set 
of ordinary differential equations with temporal 
derivative (algorithm B2). The set of linear 
equations resulting from discretization by the 
finite-difference scheme B3 was solved by the 
Gauss exclusion algorithm. In this paper we do 
not compare these calculation methods, as our 
aim was to study the advantages of finite-differ- 
ence schemes. Therefore, the results presented 
here reflect the quality of a finite-difference 
scheme, or more exactly its space discretization. 
It should be pointed out that the algorithms 
considered differ only in this respect. All other 
parts, including the solution of the non-linear 
algebraic equation of electroneutrality, were the 
same in all three. 

The properties of the three algorithms were 
compared by solving model electrophoresis prob- 
lems described above, which admit exact ana- 
lytical solutions. They were also applied to 
simulation of two-component sample separations 
by means of CZE and ITP. 

EQUIPMENT 

All calculations were performed on an IBM 
PS/2 Model 70 386 computer. Computer pro- 
grams were written in Microsoft FORTRAN 
Version 5.1. Figures were drawn by using 
GRAPHER (Golden Software). 

RESULTS AND DISCUSSION 

During the first series of simulations, three 
finite-difference schemes, Bl, B2 and B3, were 
applied to eqn. 1 governing translation and 
diffusion of an initial pulse (eqn. 3) along the 
x-axis with a constant dimensionless velocity 
u,, = 1. Three dimensionless diffusion coefficients 
were used for simulations: d = 2 * 10W5, 5 = 
1. lop4 and fi = 1. 10e3. The first case might 
correspond to the electrophoretic run of a sam- 
ple with a diffusion coefficient of 2 * lop5 cm2 s-l 
in a capillary of length 50 cm and a migration 
time from end to end of 42 min. The second case 
corresponds to a five times longer migration time 
of the same sample, i.e., cu. 3.5 h. The detection 
point was at xd = 0.4. The initial distribution of 
concentration was given by a Gaussian peak 
(eqn. 3), positioned at x,, = 0.05 and having unit 
height and mass A = 0.02. All simulations were 
performed with the spatial increments being 
equal to h = 2 * 10p3. Temporal increments were 
found from the condition of stability and were 
equal to r = 1. 10e3 for schemes B2 and B3 and 
7 = 1. 1o-4 for scheme Bl. The data on space 
and time increments on this and all subsequent 
simulations are summarized in Table I. 

Figs. 2 and 3 compare the three numerical 
results with the exact analytical so_lution (eqn. 6) 
for the two diffusion coefficients D = 2 * low5 and 
fi = 1 . 10p4, respectively. The numerical electro- 
pherograms are shown by solid lines and the 
analytical solutions by dashed lines. For the first 
case, Fig. 2A and B show large-amplitude oscil- 
lations of numerical electropherograms, obtained 
by algorithms Bl and B2, whereas scheme B3 
gives a non-oscillating solution (Fig. 2C) that 
agrees well with the exact analyti solution. In 
both instances fi << h, but h 3 $“’ d. In addition 
to the absence of oscillations, another advantage 
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TABLE I 

FINITE-DIFFERENCE GRID PARAMETERS USED FOR CALCULATIONS 

The space increment in all simulations was h = 2. 10m3. 

Algorithm Time step, 7 Parameter 5 Parameter (x 
or separation 
technique 

Fig. 

Bl 
B2 
B3 

Bl 
B2 
B3 

Bl 
B2 
B3 

Bl 
B2 
B3 

Bl 
B2 
B3 

Bl 
B2 
B3 

Bl 
B2 
B3 

Bl 
B2 
B3 

Bl 
B2 
B3 

1o-4 
10-’ 
1O-3 

1o-4 
W3 
1o-3 

5. w 
10-j 
10-j 

1o-5 
W4 
5. 1o-4 

5 ’ 1o-5 
2.5. W4 
2.5. 1O-4 

Unstable 
2.5. W4 
2.5. 10m4 

Unstable 
Unstable 
2.5. 1O-4 

5. 1o-5 
2. 1o-3 
2. 1o-3 

Unstable 
2. 1o-3 
2. 1o-3 

2. 1o-5 

1. 1o-4 

2. 1o-5 

1. 1o-4 

(1.46-2.52). 1O-3 

(3.65-6.3). 1O-4 

(1.46-2.52). 1O-5 

(2.93-5.16). lo-’ 

(2.93-5.16). 1O-6 

0 

0 

-0.5 

0.3 

ITP 

ITP 

ITP 

CZE 

CZE 

2A 
2B 
2c 

3A 
3B 
3c 

4A 
4B 
4c 

5A 
5B 
5c 

6A 
6B 
6C 

_ 

7A 
7B 

- 
- 
- 

8A 
8B 
8C 

_ 

9A 
9B 

of the numerical solution given by scheme B3 is 
that it gives the least error in the peak position 
and the peak width. Fig. 3 shows that for higher 
diffusion coefficients the numerical oscillations 
become smaller. Nevertheless, algorithms B 1 
and B2 still produce numerical oscillations and 
asymmetric peaks, although the discrepancy be- 
tween the analytical and numerical solutions is 
much less than in Fig. 2. For larger diffusion 
coefficients, the deviations of numerical solutions 
from the analytical solution become less and for 

D = 1. 10e3, when 6 “II, all three algorithms 
give excellent agreement with the analytical 
solution. However, this value of the dimension- 
less diffusion coefficient corresponds to a migra- 
tion time of cu. 35 h and can hardly be consid- 
ered as realistic. 

Figs. 4 and 5 give examples of the calculation 
of an electrophoresis run by using the three 
finite-difference algorithms, when a sample inter- 
acts with the background electrolyte, a! Z 0 and 
the velocity is not constant. The initial condition 
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-0.2 ! 
0.0 O.‘l 0.i 0.3 0.4 0.5 

-0.2-l . , , I , . , 
0.0 0.1 0.2 0.3 0.4 0.5 

-0.6-I 1 I , * , 
0.0 0.1 0.2 0.3 0.4 0!5 

Time 

Fig. 2. Electropherograms for linear equation (a = 0) calcu- 
lated by three different finite-difference algorithms. Dimen- 
sionless diffusion coefficient fi = 2. 10e5. Here and also in 
Figs. 3-5 simulated results are plotted as solid lines and 
analytical results as dashed lines. Panels A, B and C 
represent the results obtained using finite-difference algo- 
rithms Bl, B2 and B3, respectively. Concentration and time 
are measured in units of the maximal initial concentration 
and total migration time (L/u,), respectively, with L being 
the length of the capillary. 

was a rectangular pulse (see Fig. 1) of unit height 
and width equal to 0.05 starting at x = 0. Nu- 
merical results are compared in Fig. 4 for (Y = 
-0.5 and in Fig. 5 for (Y = 0.3 with analytical 
diffusionless solutions given by eqns. 7 and 8. As 
all three numerical schemes need a finite value of 
the diffusion coefficient, the relatively low values 
ofD=2~10-*for~=-0.5andD=1~10-4for 
(Y = 0.3 were chosen for all schemes. The detec- 
tion point was at xd = 0.4, u0 = 1. The space 
increment was the same in all three instances, 
but temporal increments varied so as to provide 
stability of calculations. It is seen from Figs. 4 
and 5 that for both a! < 0 and cy > 0 only the 
scheme with artificial dispersion (B3) is able to 
calculate electropherograms close to the exact 
analytical solution, whereas algorithms Bl and 

-0.2 ! , . 
0.0 0.1 0.i 0.3 0.4 0,‘s 

Time 

Fig. 3. Electropherograms for linear equation (a = 0). Di- 
mensionless diffusion coefficient 6 = 1 . 10m4. Other details 
as in Fig. 2. 

B2 give solutions with spurious large-amplitude 
oscillations behind the concentration jump in the 
profile. Calculations with a smaller time incre- 
ment T do not lead to improvements in numeri- 
cal solutions because, as stated in Theory sec- 
tion, they result from an improper space discreti- 
zation. The diffusion effects, as seen from Figs. 
4C and 5C, are small, so that-the comparison of 
the numerical solutio_n with D # 0 and the ana- 
lytical solution for D = 0 can be considered as 
correct. In these simulations the correlation 
between parameters 6 and h, the finite-differ- 
ence algorithms and the shapes of concentration 
profiles, obtained using these schemes, is similar 
to that in the previous simulations. 

In the following example, two series of simula- 
tions were applied to CZE and ITP separations 
for a two-component sample composed of the 
weak bases aniline and pyridine. It was necessary 
to investigate the behaviour of different numeri- 
cal algorithms for conditions close to those in 
real experimental runs. For this purpose, simula- 
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Fig. 4. Electropherograms for non-linear equ_ation (a = 
-0.5). Dimensionless diffusion coefficient D = 2. 10m5. 
Other details as in Fig. 2. 

tions were performed at several constant but 
different values of applied current, approaching 
separation times with reasonable values. The 
mathematical model used in the simulations was 
based on the same assumptions as stated in ref. 
14. The set of equations is presented in Appen- 
dix A and it was solved by using the three 
calculation algorithms as described above. All 
simulations assumed a capillary of 50 pm I.D. 
thermostated at 25°C and with the detector 
located at a point with coordinate xd = 10 cm. 
The volumes of injected samples were 20 nl for 
ITP runs and 10 nl for CZE runs. The lengths of 
the initial sample plugs corresponding to these 
volumes were cu. 1 and 0.5 cm, respectively. In 
the ITP simulation, the sample was placed in the 
capillary between X, = 1 cm and X, = 2 cm, 
whereas for CZE it was located within the 
interval x, = 0.5 cm and x, = 1 cm, so that the 
migration path to the detector in the former 
instance was 8 cm and in the latter 9 cm. 

In the series of ITP simulations the leading 
electrolyte was composed of 18 mM sodium hy- 
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Fig. 5. Electropherograms for non-lin_ear equation (a = 0.3). 
Dimensionless diffusion coefficient D = 1. 10m4. Other de- 
tails as in Fig. 2. 

droxide and 20 mM acetic acid, which was the 
common counter ion in the system, the termin- 
ating electrolyte being 40 mM @alanine plus 50 
mM acetic acid. In the sample zone the initial 
concentrations were 10 mM aniline, 10 mM 
pyridine and 20 mM acetic acid. The data on ionic 
mobilities and pK values for specified substances 
used in the simulations are presented in Table II. 

TABLE II 

INPUT DATA FOR COMPUTER SIMULATIONS 

Substance PK p(10-8 rn’/Ve s) 

Tris 8.3 2.41 

p-Alanine 3.3 3.6 

Pyridine 5.18 3.0 

Aniline 4.8 3.25 
Acetate 4.75 4.24 

Na+ 5.19 

H’ 36.3 

OH- 20.5 
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Simulations were performed for four values of 
applied current, 0.05, 0.2, 0.5 and 5 PA. 

As in previous simulations, the results are 
presented in the form of detector signals mea- 
sured separately for each substance. For a cur- 
rent value of J = 0.05 PA, the concentration 
profiles are depicted in Fig. 6, where A, B and C 
show the simulation data obtained with finite- 
difference algorithms Bl, B2 and B3, respective- 
ly. In order to provide computational stability, 
the temporal increment 7 for algorithm Bl was 
chosen to be five times smaller than the incre- 
ments used in the other two algorithm? (see 
Table I). The dimensionless parameter D here 

3 

225 

150 175 zoo 225 

Time <mln> 

Fig. 6. Simulation for ITP separation of aniline and pyridine. 

Current, 0.05 PA. Panels A, B and C represent the results 

obtained using finite-difference algorithms Bl, B2 and B3, 

respectively. Here and also in Fig. 7 pure zones of leader, 

substance components pyridine and aniline and terminator 

are designated by 1, 1, 2 and t, respectively. A = Sodium 

hydroxide (leader); line without symbols = pyridine (com- 

ponent 1); 0 = aniline (component 2); 0 = @alanine (ter- 
minator). 

lies within the range 1.46 * 10m3 G fi G 2.52 * 10m3 
and have the-order of magnitude of the space 
increment h( D = h, see Table I). Fig. 6 shows 
that only the solution given by finite-different 
scheme B3 is free from spurious oscillations. 
Conversely, the concentration profiles obtained 
by schemes Bl and B2 contain substantial oscil- 
lations in the regions close to the zone 
boundaries. The amplitude and the number of 
oscillations depend on the magnitude of the 
concentration gradients. For example, at the 
interface between sample species 1 and 2 the 
gradients are smaller than at the other interfaces 
and no oscillations are observed here. In con- 
trast, the oscillations have the greatest amplitude 
at the 2-T interface (Fig. 6A and B), where the 
self-sharpening effect is the strongest and con- 
centrations are changing most sharply. Neverthe- 
less, these two solutions may be considered to be 
feasible, as they allow one to obtain valuable 
information on separation times and concentra- 
tion distributions. 

However, this simulation was performed for 
small current values, so that the migration path 
of barely 8-9 cm took between 2 and 3 h, which 
would be unsatisfactory in real experiment. The 
next example was simulated for a current four 
times greater, i.e., J = 0.2 PA, and the results 
are shown in Fig. 7, obtained with algorithms 
(A) B2 and (B) B3 only; attempts to perform 
simulations with algorithm Bl demanded too 
much computational effort because, in order to 
provide the necessary computational stability 
one would have to use very small time incre- 
ments. The concentration profiles calculated with 
algorithm B2 are severely distorted by false 
oscillations, which obscure the separation pat- 
tern. The solution given by B3 demonstrates 
only small spikes just near the zone interfaces. 
The other feature observed in Fig. 7 is the 
different lengths of zone 2 in A and B. Accord- 
ing to Fig. 7A, the terminating electrolyte 
reaches the detector by t = 48 min, whereas in 
Fig. 7B this time is 49 min. The last value is 
correct as it corresponds to the value obtained in 
the previous simulation (Fig. 6) divided by four 
(the electric current is four times greater and, 
therefore, the migration time must be exactly 
four times less). 
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Time (min> 

Fig. 7. Simulation for ITP separation of aniline and pyridine. 
Current, 0.2 PA. Panels A and B represent the results 
obtained using finite-difference algorithms B2 and B3, re- 
spectively. Other details as in Fig. 6. 

The simulations at greater current values, J = 
0.5 and 5 PA, could be performed only by using 
algorithm B3, as the other two exhibit computa- 
tional instability. For these currents the solution 
given by B3 was slightly distorted by spikes 
analogous to those in Fig. 7B. However, their 
amplitude was smaller than that of the oscilla- 
tions in Fig. 7A, and the zone length was 
resolved correctly. 

In the next series of simulations, modelling of 
a CZE separation of aniline and pyridine, Tris- 
acetate buffer was used with concentrations of 
Tris = 12 mM and acetic acid = 20 mM. This 
mixture gives a b;ffer with pH = 5, which is 
approximately half way between the pK values 
of aniline and pyridine and thus provides the 
most suitable separation conditions. The concen- 
tration of both sample species was 1 mM. The 
simulations were performed for current values 
J=l and 10 PA. 

Concentration profiles for J = 1 PA calculated 
using the three algorithms Bl, B2 and B3 are 
plotted in Fig. 8A, B and C, respectively. As in 
the previous cases, satisfactory results are ob- 
tained only with the algorithm using the finite- 
difference scheme B3. The other two give con- 

C 

Time (r-nit-t) 

Fig. 8. Simulation for CZE separation of aniline and 
pyridine. Current, 1 PA. The first substance detected is 
pyridine (left zone, between 20 and 30 min) and the second is 
aniline (right zone, between 30 and 40 mm). Panels A, B and 
C represent the results obtained using finite-difference algo- 
rithms Bl, B2 and B3, respectively. 

centration profiles distorted by large-amplitude 
oscillations and contain several peaks that could 
cause confusion. The positions of the first peak 
in Fig. 8A and B are close to the position of that 
in Fig. 8C, but the corresponding concentration 
values are different. In Fig. 8A and B they are 
unrealistic, as they exceed 1 mM. The profiles in 
Fig. 8C contain only small spikes just before and 
after the concentration jump. For larger currents 
(J = 10 PA, Fig. 9) the calculations by algorithm 
Bl were unstable up to time increments 7 3 
lo-‘, so the simulation run required too much 
time to be performed. Scheme B2 gave a solu- 
tion totally distorted by oscillations (Fig. 9A). 
Indeed, the separated zones decay into several 
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Til-l-le <win> 
Fig. 9. Simulation for CZE separation of aniline and 
pyridine. Current, 10 PA. The first substance detected is 
pyridine (left zone, between 2 and 3 min) and the second is 
aniline (right zone, between 3 and 4 min). Panels A and B 
represent the results obtained using finite-difference algo- 
rithms B2 and B3, respectively. 

solitary waves (solitons), resulting from the ac- 
tion of numerical dispersion [ll]. The concen- 
tration profiles obtained by algorithm B3 (Fig. 
9B) still retain the correct shape, but the non- 
physical spikes become greater. 

CONCLUSIONS 

Computer science is today applied with in- 
creasing frequency to the solution of problems in 
separation science. This is welcome in the field 
of electrokinetic processes, owing to the great 
complexity and non-linearity of electrophoresis 
equations. Thus, the efforts undertaken years 
ago by Bier’s group at the Center for Separation 
Science in Tucson, AZ [5,6], by Dose and 
Guiochon [3], by Gas and co-workers [9,10] and 
by Fidler et al. [7,8] represent an important step 
in the right direction, because in principle they 
should allow the experimenter to predict and 
optimize the separation by a “dry chemistry” 
approach (i.e., by computer simulations) prior to 
the “wet chemistry” run. Unfortunately, so far 
none of these approaches has found its way into 

laboratory practice (except perhaps in the few 
laboratories which have developed such pro- 
grams), so they have been of no utility to most of 
the potential users. As it turns out from this 
study, this is not because such programs have not 
been offered on the market, but rather because 
they were unable to predict real experimental 
conditions. Previously reported algorithms could 
only be adopted for solving separations at un- 
realistically low current densities, in general two 
to three orders of magnitude lower than those 
generally utilized in routine practice. Under 
these conditions, the transit times of analytes 
would be of the order of one to two days of 
electrophoresis, which does not compare 
favourably with modern electrophoretic science, 
where analyte peaks (especially in CZE) could 
be swept past the detector in a few minutes. 
When these algorithms were tried by us at real 
current densities, all of them broke down in a 
nightmare of numerical oscillations, which bore 
no resemblance to reality. We therefore feel that 
the solutions proposed and adopted here, which 
can still predict the correct peak shape and 
structure under real experimental conditions, 
could be an important step forward in computer 
science as applied to electrophoresis and facili- 
tate the approach of newcomers to this impor- 
tant field of separation science. In conclusion, we 
believe that computer science applied to sepa- 
ration processes will grow more and more in 
importance and will soon become the basis on 
which to build any type of separation. 
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APPENDIX A 

Governing equations 
Our mathematical model is based on assump- 

tions formulated in refs. 1 and 14. 
An aqueous solution contains weak monoval- 
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ent acids HA, and bases B,, for which the 
association-dissociation reactions can be repre- 
sented by 

HA ,fA,+H+,n=l,2 ,..., N (Al) 

H+B ,$B,+H+,m=1,2 ,...., M (A2) 

H,O=H+ + OH- (A3) 

Dissociation equilibrium constants K: and KL 
and degrees of dissociation LX,, and & are given 

by 

K” = KIw+l G 
n WA,1 ’ a,, = K; + [H+] ’ 

n=l,2,...,N (A4) 

Kb = [‘LI[H+l v-I+1 
m [H+B,] ’ Pm = K; + [H+] ’ 

m=l,2,...,M (A5) 

[H+][OH-] = K, 646) 

where K, = lo-l4 is the ionic product of water. 
The analytical concentrations of acids, a,, = 

[HA,] + [A,], and bases, b, = [B,] + [H+B,], 
obey the mass conservation laws: 

2 + V(z~(y,&aL,Z? - DEVa,) = 0, z: = -1, 

n=l,2,. . . . , N (A7) 

ab 

z; = +l,m=l,2 ,..., M (A8) 

where Z.L~ and z$,, are the ionic mobilites and 0: 
and Dk are the diffusion coefficients for acids (a) 
and bases (b), which are expressed by the 
Einstein equation: 

D = RTpIF 

where F = 96 484 C/m01 is the Faraday constant, 
T is the absolute temperature and R = 8.314 
J/m01 - K is the universal gas constant. 

The continuity equation for an electric current 
has the form 

V.i=O (A9) 

The generalized Ohm’s law is given by 

+ p&-l+] + poHIOH-]) . ,f? - T z:DiV(wqJ 

- 2 z~@,V(P,b,) - D,V[H+l 
m 

+ Do,V[OH-] 
I (Alo) 

The electroneutrality equation is valid: 

q = F 2 zk&b,,, + [H+] + c ztQ;ta, - 
m n WI) 

= 0 (All) 

APPENDIX B 

We introduce the finite-difference grid R by 
dividing the calculation interval [0, L] into Z 
equal subintervals (space steps) h = LIZ, and by 
dividing the time interval [0, T] into K equal 
time subintervals (time steps) 7 = T/K, ie., 0 = 
&(;-l)+,i=l,2 ,..., Z+l,}x{t =k.r, 

. . 9 K+l}. 
The fohowing notation is introduced: 

f: =f& tk) =A, f;+l =f(+ P+‘) =$, 

fj0.5) = + (i +A>, ff+,,, = + <ff+, +.c) 

where f = f(x, t) is an arbitrary function. 
For the finite-difference approximation of de- 

rivatives we use the notation 

f=f 
i 

r+1/2 -R-1,2, 

h 
f = h+1 -h-l 
f 2h ’ 

f_=A+l-zf;+f;-l 
xx h2 ’ 

f_ _ = A+, - 3h + 3X-I -L-2 

*xx h3 
9 

f _ = h+2 - 3X+, + 3L -&-I 
XXX h3 
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In the text we refer to ff and f; as the “upwind” 
and “central” differences, respectively. 

The first algorithm we consider uses the Euler 
integration method for the set of ordinary dif- 
ferential equations resulting from the space dis- 
cretization. It is written at every space grid node 
as 

c, + (UC), - D * c,, = 0 031) 

In the second algorithm we have the set of 
ordinary differential equations, written at every 
xi node: 

032) 

which are integrated using the Runge-Kutta 
method [26]. 

The finite-difference scheme underlying the 
third algorithm in the above notation has the 
form 

c, + (Uc(“.5))1 - D * cy + d + w + % = 0 

(B3) 

where 

A! = -G [sign(u). (z~C(~.~))~~~ 

+ (1 - sign(u)) * (uC(~.~))~J 

sign(u) = 1 if 2.4 > 0 

sign(u) = 0 if 2.4 S 0 

The finite-difference scheme B3, in addition to 
three common terms contained in all the 
schemes, also has three additional terms, d, !% 
and 59, responsible for artificial dispersion [13]. 
The terms ~4 and the % were used for all 
simulations, whereas 9 was set to zero in simula- 
tions of CZE and ITP. 
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